Number Systems

What is a number system?

It is a system of representing numbers using numbers or other symbols in a consistent manner.

Types of number system

- Binary number system (base 2)
- Octal number system (base 8)
- Decimal number system(base 10)
- Hexadecimal number system(base 16)

In this class, we will discuss the binary, decimal and hexadecimal number systems

Decimal Number System

The decimal number system uses ten digits: $0,1,2,3,4,5,6,7,8$ and 9 with the base number as 10. The decimal number system is the system that we generally use to represent numbers in real life.

Examples of decimal numbers

- 723
- 21
- 4570

Binary Number System

The binary number system uses only two digits: 0 and 1 .
Digits 0 and 1 are called bits
The numbers in this system have a base of 2
Examples of binary numbers:

- $(1010)_{2}$
- $(1111)_{2}$
- $(0000)_{2}$

Hexadecimal Number System

In the hexadecimal number system, there are sixteen digits/alphabets: $0,1,2,3,4,5,6,7,8,9$ and A, B, C, D, E, F with the base number of 16 . The numbers A-F of the hexadecimal system correspond to the decimal numbers 10-15.

Examples of Hexadecimals:

- $\quad\left(\mathrm{F} 73_{16}\right.$
- $5 F_{16}$
- $4 \mathrm{~B}_{3} \mathrm{~A}_{16}$

Number System Conversions

We can be able to convert a number from one system to another, for example a binary number to hexadecimal

Converting Decimals to Binaries

How to convert decimal to binary?
Conversion steps:

1. Divide the number by 2 .
2. Get the integer quotient for the next iteration.
3. Get the remainder for the binary digit.
4. Repeat the steps until the quotient is equal to 0 .

Example 1

Convert 12_{10} into a binary number

Division by 2	Quotient	Remainder
$12 / 2$	6	0
$6 / 2$	3	0
$3 / 2$	1	1
$1 / 2$	0	1

So $12_{10}=1100_{2}$

Example 1

Convert 13_{10} into a binary number

Division by 2	Quotient	Remainder
$13 / 2$	6	1
$6 / 2$	3	0
$3 / 2$	1	1
$1 / 2$	0	1

So $13_{10}=1101_{2}$

Example 1

Convert 10 (base 10) into a binary number

Division by 2	Quotient	Remainder
$10 / 2$	5	0
$5 / 2$	2	1
$2 / 2$	1	0
$1 / 2$	0	1

So $10($ base 10$)=1010($ base 2$)$

Activity

Convert the following numbers into binary numbers

1. 32_{10}
2. 500_{10}
3. 200_{10}
4. 69_{10}

Converting Binaries to Decimals

How to convert binary to decimal
For binary number with n digits:
dn-1 ... d3 d2 d1 d0

The decimal number is equal to the sum of binary digits (dn) times their power of $2(2 n)$:
decimal $=d 0 \times 20+d 1 \times 21+d 2 \times 22+\ldots$

Example 1

Convert (1101) $)_{2}$ base to a decimal number?

Binary number	1	1	0	1
Power of 2	2^{3}	2^{2}	2^{1}	2^{0}

$(1101)_{2}=1^{*} 2^{3}+1^{*} 2^{2}+0 * 2^{1}+1^{*} 2^{0}$
$=1 * 8+1^{*} 4+0 * 2+1^{*} 1$
$=8+4+0+1$
$=13_{10}$

Converting Binaries to HexaDecimals

How to convert binary to hex?
Convert every 4 binary digits (start from bit 0) to 1 hex digit, with this table:

Binary	Hex
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8
1001	9
1010	A
1011	C
1100	

Example 1

Convert binary 1101100 to hex:
Convert every 4 binary bits (from bit0) to hex digit:
$1101100_{2}=01101100=6 C=6 C_{16}$

Example 1

Convert binary 10001110_{2} to hex:
Convert every 4 binary bits (from bit0) to hex digit:

$$
10001110_{2}=10001110=8 E=6 \mathrm{E}_{16}
$$

Converting HexaDecimals to Binaries

For hex number with n digits:
$d_{n-1} \ldots d_{3} d_{2} d_{1} d_{0}$

Multiply each digit of the hex number with its corresponding power of 16 and sum:

$$
\text { decimal }=d_{n-1} \times 16^{n-1}+\ldots+d_{3} \times 16^{3}+d_{2} \times 16^{2}+d_{1} \times 16^{1}+d_{0} \times 16^{0}
$$

Example

Convert $2 \mathrm{~B}_{16}$ to base 10

$$
3 B_{16}=3 \times 161+11 \times 160=48+11=59_{10}
$$

