Number Systems

What is a number system?

It is a system of representing numbers using numbers or other symbols in a consistent manner.

Types of number system

- Binary number system (base 2)
- Octal number system (base 8)
- Decimal number system(base 10)
- Hexadecimal number system(base 16)

In this class, we will discuss the binary, decimal and hexadecimal number systems

Decimal Number System

The decimal number system uses ten digits: 0,1,2,3,4,5,6,7,8 and 9 with the base number as 10. The decimal number system is the system that we generally use to represent numbers in real life.

Examples of decimal numbers

- 723
- 21
- 4570

Binary Number System

The binary number system uses only two digits: 0 and 1.

Digits 0 and 1 are called bits

The numbers in this system have a base of 2

Examples of binary numbers:

- (1010)₂
- (1111)₂
- (0000)₂

Hexadecimal Number System

In the hexadecimal number system, there are sixteen digits/alphabets: 0,1,2,3,4,5,6,7,8, 9 and A,B,C,D, E, F with the base number of 16. The numbers A-F of the hexadecimal system correspond to the decimal numbers 10-15.

Examples of Hexadecimals:

- (F73₁₆
- 5F₁₆
- 4B3A₁₆

Number System Conversions

We can be able to convert a number from one system to another, for example a binary number to hexadecimal

Converting Decimals to Binaries

How to convert decimal to binary?

Conversion steps:

- 1. Divide the number by 2.
- 2. Get the integer quotient for the next iteration.
- 3. Get the remainder for the binary digit.
- 4. Repeat the steps until the quotient is equal to 0.

Convert 12₁₀ into a binary number

Division by 2	Quotient	Remainder
12 / 2	6	0
6 / 2	3	0
3/2	1	1
1/2	0	1

So 12₁₀ = 1100₂

Convert 13_{10} into a binary number

Division by 2	Quotient	Remainder
13 / 2	6	1
6 / 2	3	0
3/2	1	1
1/2	0	1

So 13₁₀ = 1101₂

Convert 10 (base 10) into a binary number

Division by 2	Quotient	Remainder
10 / 2	5	0
5/2	2	1
2/2	1	0
1/2	0	1

So 10 (base 10) = 1010 (base 2)

Activity

Convert the following numbers into binary numbers

- 1. 32₁₀
- 2. 500₁₀
- 3. 200₁₀
- 4. 69₁₀

Converting Binaries to Decimals

How to convert binary to decimal

For binary number with n digits:

dn-1 ... d3 d2 d1 d0

The decimal number is equal to the sum of binary digits (dn) times their power of 2 (2n):

decimal = $d0 \times 20 + d1 \times 21 + d2 \times 22 + ...$

Convert (1101)₂ base to a decimal number?

Binary number	1	1	0	1
Power of 2	2 ³	2 ²	2 ¹	2 ⁰

$$(1101)_{2} = 1 * 2^{3} + 1 * 2^{2} + 0 * 2^{1} + 1 * 2^{0}$$
$$= 1 * 8 + 1 * 4 + 0 * 2 + 1 * 1$$
$$= 8 + 4 + 0 + 1$$
$$= 13_{10}$$

Converting Binaries to HexaDecimals

How to convert binary to hex?

Convert every 4 binary digits (start from bit 0) to 1 hex digit, with this table:

Binary	Hex
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8
1001	9
1010	A
1011	В
1100	С

Convert binary 1101100₂ to hex:

Convert every 4 binary bits (from bit0) to hex digit:

110**1100**₂ = 0110 **1100** = 6 **C** = 6C₁₆

Convert binary 10001110₂ to hex:

Convert every 4 binary bits (from bit0) to hex digit:

1000**1110**₂ = 1000 **1110** = 8 *E* = 6E₁₆

Converting HexaDecimals to Binaries

For hex number with n digits:

 $d_{n-1} \dots d_3 d_2 d_1 d_0$

Multiply each digit of the hex number with its corresponding power of 16 and sum:

decimal =
$$d_{n-1} \times 16^{n-1} + ... + d_3 \times 16^3 + d_2 \times 16^2 + d_1 \times 16^1 + d_0 \times 16^0$$

Convert $2B_{16}$ to base 10

 $3B_{16} = 3 \times 161 + 11 \times 160 = 48 + 11 = 59_{10}$